1.3 EXPONENTIAL FUNCTIONS

Warm-Up/Review

- Show algebraically that $f(x)=4 x^{3}-3 x$ is an odd function.

$$
\begin{aligned}
& \text { A function is odd if } \mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x}) \\
& \begin{aligned}
\mathrm{f}(-\mathrm{x}) & =4(-\mathrm{x})^{3}-3(-\mathrm{x}) \\
& =4(-1)^{3}(\mathrm{x})^{3}-3(-1)(\mathrm{x}) \\
& =4(-1)(\mathrm{x})^{3}-3(-1)(\mathrm{x}) \\
& =(-1)\left(4 \mathrm{x}^{3}-3 \mathrm{x}\right) \\
& =-\mathrm{f}(\mathrm{x})
\end{aligned}
\end{aligned}
$$

- Show algebraically that $\mathrm{f}(\mathrm{x})=\frac{x}{2 x^{3}+x}$ is an even function.

A function is even if $f(-x)=f(x)$

$$
\begin{aligned}
f(-x) & =\frac{-x}{2(-x)^{3}+(-x)} \\
& =\frac{-1(x)}{-1\left(2 x^{3}+x\right)} \\
& =\frac{x}{2 x^{3}+x}=\mathrm{f}(\mathrm{x})
\end{aligned}
$$

INVESTIGATION

- Graph the function $y=a^{x}$ for $a=2,3,5$, in a $[-5,5]$ by $[-2,5]$ viewing window.
-For what values of x is it true that $2^{\mathrm{x}}<3^{\mathrm{x}}<5^{\mathrm{x}}$?

$$
x>0
$$

-For what values of x is it true that $2^{x}>3^{x}>5^{x}$?

$$
x<0
$$

- For what values of x is it true that $2^{\mathrm{x}}=3^{\mathrm{x}}=5^{\mathrm{x}} ? \quad \mathrm{x}=0$

Investigation

- Graph the function $y=(1 / a)^{x}=a^{-x}$ for $\mathrm{a}=2,3,5$, in a $[-5,5]$ by $[-2,5]$ viewing window.
- For what values of x is it true that $2^{x}<3^{x}<5^{x} ? \quad x<0$
- For what values of x is it true that $2^{x}>3^{x}>5^{x}$? $\quad x>0$
- For what values of x is it true that $2^{x}=3^{x}=5^{x} ? \quad x=0$

Exponential Functions

- Exponential functions have the form
$\circ f(x)=a^{x}, a>0$, and $a \neq 1$
o where a is the base
- Domain is $(-\infty, \infty)$
-Range is $(0, \infty)$
Plots:

$$
a>1
$$

$0<a<1$

Exponential Functions - RULES of EXPONENTS:

-If $\mathrm{a}>0$ and $\mathrm{b}>0$, the following are true for all real numbers x and y :

- $a^{x} a^{y}=a^{x+y}$
$\bigcirc \frac{a^{x}}{a^{y}}=a^{x-y}$
- $\left(a^{x}\right)^{y}=a^{x y}$
- $a^{x} b^{x}=(a b)^{x}$
- $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$

Exponential Functions Applications

- Exponential growth - population growth, interest \& investments, bacterial growth
$\circ \mathrm{y}=\mathrm{ka} \mathrm{a}^{\mathrm{x}}, \mathrm{k}>0$ and $\mathrm{a}>1$
- Exponential decay - half-life of radioactive elements
oy=ka ${ }^{\mathrm{x}}, \mathrm{k}>0$ and $0<\mathrm{a}<1$

Example: Population Growth

-The population of Silver Run in the year 1890 was 6250 . Assume the population increased at a rate of 2.75% per year.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{t})=6250(1.0275)^{\mathrm{t}} \\
& \text { Pop in } 1915=\mathrm{P}(25)=12,315 \\
& \text { Pop in } 1940=\mathrm{P}(50)=24,265
\end{aligned}
$$

oa) Estimate the population in 1915 and 1940
ob)Approximately when did the population reach 50,000 ?

Graph $\mathrm{y} 1=\mathrm{P}(\mathrm{t})$ and $\mathrm{y} 2=50,000$ and find the intersection.
$\mathrm{t}=76.75$ years

Example: Half-Life

oSuppose the half-life of a certain radioactive substance is 20 days and there are 5 grams present initially. When will there be only 1 gram of the substance remaining?
$\circ \mathrm{A}(\mathrm{t})=5(1 / 2)^{\mathrm{t} / 20}$ models the mass in grams after t days.

- Solve graphically

Example: Compound Interest

$\circ \mathrm{y}=\mathrm{A}\left(1+\frac{I}{n}\right)^{n t}$
-Where n is the number of times interest is compounded per year
-I is the interest rate (decimal)
$\circ \mathrm{A}$ is the starting amount

The number E

oThe functions $y=e^{x}$ and $y=e^{-x}$ are often used as models of exponential growth or decay.

- Interest compounded continuously
$-\mathrm{y}=\mathbf{P e}^{\mathrm{rt}}$
$\circ \mathrm{P}=$ initial investment
o $\mathrm{e}=2.71828 .$.
or=interest rate (in decimal form)
ot=time in years

Assignment

-P. 24 \# 1-7, 10, 11, 13, 16, 18, 23-33 odd

- Due Monday
- Quiz tomorrow - lines, slope, functions \& graphs, domain, range, symmetry, piecewise functions, combining functions!

