INVERSE FUNCTION

- A function, f, takes an input (x), does something to it, and produces an output, $\mathrm{f}(\mathrm{x})$.
- An inverse function is a function that will undo anything that the original function does.

Inverse function - Notation

- $f(x)$ denotes the function
- $f^{-1}(x)$ denotes the inverse of $f(x)$
- Not all functions have inverses!

One-to-One Function

- A function $f(x)$ is one-to-one on a domain D if $f(a) \neq f(b)$ whenever $a \neq b$.
- Each input has a unique output
- We can use the horizontal line test

One-To-One Function

- Use your calculator to determine which functions are one-to-one:
$o f(x)=|x| \quad$ No
$o g(x)=\sqrt{x} \quad$ Yes
$o \mathrm{~h}(\mathrm{x})=3 \mathrm{x}+2$ Yes
$\operatorname{ot}(\mathrm{x})=x^{3}-4 x \quad$ No

Finding Inverses

- The result of composing a function and its inverse in either order is the identity function
$\circ f \circ f^{-1}(x)=f^{-1} \circ f(x)=x$

Finding Inverses

- Make sure the function is one-to-one.
oIf it is not one-to-one, you can restrict the domain to make it one-to-one.
- Solve the equation $y=f(x)$ for x in terms of y
o Switch x and y . Your result will be $y=f^{-1}(x)$
\circ Verify that $f \circ f^{-1}(x)=f^{-1} \circ f(x)=x$

Finding Inverses - EXAMPLE 1

- $\mathrm{f}(\mathrm{x})=-2 \mathrm{x}+4$
- The function is a line and is one-to-one
- Solve the equation $y=f(x)$ for x in terms of y
- $y=-2 x+4$
- $2 x=4-y$
- $x=2-\left(\frac{1}{2}\right) y$
- Switch x and y. Your result will be $y=f^{-1}(x)$
- $y=2-\left(\frac{1}{2}\right) x$
- $f^{-1}(x)=2-\left(\frac{1}{2}\right) x$
- Verify $f \circ f^{-1}(x)=f^{-1} \circ f(x)=x$

Finding Inverses - Example 2

- $f(x)=x^{2}$ for $\mathrm{x} \leq 0$
- The function x^{2} is not one-to-one, but when the domain is restricted to $x \leq 0$, it is one-to-one
- Solve the equation $y=f(x)$ for x in terms of y
- $y=x^{2}$
- $x= \pm \sqrt{y}$ since our domain is $\mathrm{x} \leq 0$, we need to use $-\sqrt{y}$
- $x=-\sqrt{y}$
- Switch x and y. Your result will be $y=f^{-1}(x)$
- $y=-\sqrt{x}$
- $f^{-1}(x)=-\sqrt{x}$ the domain for f^{-1} is $\mathrm{x} \geq 0$
- Continue to verification next page

Finding Inverses - Example 2

- Verify $f \circ f^{-1}(x)=f^{-1} \circ f(x)=x$
of $\circ f^{-1}(x)=x \quad$ for $x \geq 0\left(\right.$ domain of $\left.f^{-1}\right)$
$f(-\sqrt{x})=(-\sqrt{x})^{2}=x$
- Verify $f^{-1} \circ f(x)=x$ for $x \leq 0$ (domain off)
$\circ f^{-1}\left(x^{2}\right)=\left(-\sqrt{x^{2}}\right)=-|x|=-(-x)=x$ recall $|x|=-x$ for $x<0$

AsSIGNMENT
○P. 39 \#1-12, 14, 19, 21,
23, 24

