1.5A FUNCTIONS AND INVERSES

INVERSE FUNCTION

- A **function**, f, takes an input (x), does something to it, and produces an output, f(x).
- An **inverse function** is a function that will undo anything that the original function does.

INVERSE FUNCTION - NOTATION

f(x) denotes the function f⁻¹(x) denotes the inverse of f(x) Not all functions have inverses!

ONE-TO-ONE FUNCTION

• A function f(x) is one-to-one on a domain D if f(a) ≠ f(b) whenever a ≠ b. • Each input has a unique output • We can use the *horizontal line test*

ONE-TO-ONE FUNCTION

•Use your calculator to determine which functions are one-to-one:

- of(x) = |x| No
- $og(x) = \sqrt{x}$ Yes
- oh(x) = 3x + 2 Yes
- $ot(\mathbf{x}) = x^3 4x \qquad No$

FINDING INVERSES

• The result of composing a function and its inverse in either order is the identity function

$$of \circ f^{-1}(x) = f^{-1} \circ f(x) = x$$

FINDING INVERSES

Make sure the function is one-to-one. If it is not one-to-one, you can restrict the domain to make it one-to-one.

- Solve the equation y = f(x) for x in terms of y
- Switch x and y. Your result will be $y = f^{-1}(x)$

• Verify that $f \circ f^{-1}(x) = f^{-1} \circ f(x) = x$

FINDING INVERSES – EXAMPLE 1

o f(x) = -2x + 4

The function is a line and is one-to-one
Solve the equation y = f(x) for x in terms of y

• y = -2x + 4

 $\circ 2x = 4 - y$

 $\circ x = 2 - \left(\frac{1}{2}\right)y$

• Switch x and y. Your result will be $y = f^{-1}(x)$

• $y = 2 - \left(\frac{1}{2}\right)x$ • $f^{-1}(x) = 2 - \left(\frac{1}{2}\right)x$ • Verify $f \circ f^{-1}(x) = f^{-1} \circ f(x) = x$

FINDING INVERSES – EXAMPLE 2

• $f(x) = x^2$ for $x \le 0$

The function x² is not one-to-one, but when the domain is restricted to x≤0, it is one-to-one
Solve the equation y = f(x) for x in terms of y

- Solve the equation y = f(x) for x in terms (• $y = x^2$
- $x = \pm \sqrt{y}$ since our domain is $x \le 0$, we need to use $-\sqrt{y}$
- x = -√y
 Switch x and y. Your result will be y = f⁻¹(x)
 y = -√x
 f⁻¹(x) = -√x the domain for f⁻¹ is x≥0
 Continue to verification next page

FINDING INVERSES – EXAMPLE 2 • Verify $f \circ f^{-1}(x) = f^{-1} \circ f(x) = x$ • $f \circ f^{-1}(x) = x$ for $x \ge 0$ (domain of f^{-1}) • $f(-\sqrt{x}) = (-\sqrt{x})^2 = x$

• Verify
$$f^{-1} \circ f(x) = x$$
 for $x \le 0$ (domain of f)
• $f^{-1}(x^2) = (-\sqrt{x^2}) = -|x| = -(-x) = x$
recall $|x| = -x$ for $x < 0$

ASSIGNMENT

•P. 39 #1-12, 14, 19, 21, 23, 24