Limits

Warm-Up

- Find $\mathrm{f}(2)$ for each function:

1. $f(x)=\frac{4 x^{2}-5}{x^{3}+4}$
2. $f(x)=\sin \left(\pi \frac{x}{2}\right)$
3. $f(x)=\left\{\begin{array}{l}3 x-1, x<2 \\ \frac{1}{x^{2}-1}, x \geq 2\end{array}\right.$

Learning targets. I can...

- Find one- and two-sided limits

Why limits?

- Average rate of change and instantaneous rate of change are two very important ideas in calculus. We're going to talk about them using a physics problem and see how it ties to the idea of a limit.
- A moving body's average speed during an interval of time is found by dividing the distance covered by the elapsed time.
- How could we determine the average speed of the marble on the track.

Why limits?

- The marble's position as a function of time is given by $\mathrm{y}=1.7 \mathrm{t}^{2}$
- The average speed over any interval is given by the distance traveled, Δy, divided by the length of the interval, Δx.
- Calculate the average speed from $t=0$ to $t=2$ seconds
- Average speed $=\frac{\Delta y}{\Delta x}=\frac{f(2)-f(0)}{2-0}$

Why limits?

- How would we find the instantaneous speed of the marble? (i.e., the speed of the marble at a given instant in time?)
- Find the speed of the marble at $t=2 s$
- We can calculate the average speed of the marble over a very small interval of time, from $\mathrm{t}=2$ to $\mathrm{t}=2+\mathrm{h}$
- $\frac{\Delta y}{\Delta x}=\frac{f(2+h)-f(2)}{(2+h)-2}=\frac{1.7(2+h)^{2}-1.7(2)^{2}}{h}$

Why limits?

- $\frac{\Delta y}{\Delta x}=\frac{f(2+h)-f(2)}{(2+h)-2}=\frac{1.7(2+h)^{2}-1.7(2)^{2}}{h}$
- We can't use this formula to calculate the speed at the exact instant $t=2$ (we would need $h=0$) because that would result in division by 0 , which is undefined.
- BUT, we can get a good idea of what is happening at $\mathrm{t}=2$ by evaluating the formula for values of h very close to 0 .

Why limits?

- $\frac{\Delta y}{\Delta x}=\frac{f(2+h)-f(2)}{(2+h)-2}=\frac{1.7(2+h)^{2}-1.7(2)^{2}}{h}$
- Evaluate the formula for the following values of h :

Length of time interval, h	Average speed for interval, $\Delta \mathrm{y} / \Delta \mathrm{x}$
1	8.5
0.1	6.97
0.01	6.817
0.001	6.8017
0.0001	6.80017
0.00001	6.800017

Why limits?

- $\frac{\Delta y}{\Delta x}=\frac{f(2+h)-f(2)}{(2+h)-2}=\frac{1.7(2+h)^{2}-1.7(2)^{2}}{h}$
- As h gets closer and closer to 0 , the value of the function gets closer and closer to a limiting value -6.8.
- In other words, we are getting closer and closer to the speed at a particular instant of time (2 seconds).

Why limits?

- $\frac{\Delta y}{\Delta x}=\frac{f(x+h)-f(x)}{(x+h)-x}$
- This expression is called the difference quotient
- The difference quotient is a measure of the average rate of change of the function over an interval. It is the slope of a secant line.
- The limit of the difference quotient as $\mathrm{h} \rightarrow 0$ is the instantaneous rate of change. The slope of the tangent line at the point of interest.

Definition of Limit

- Limits let us describe how the outputs of a function behave as the inputs approach some particular value.
- the limit of a function is what the function "approaches" when the input (the variable " x " in most cases) approaches a
 specific value.

Definition of Limit

- Let c and L be real numbers. The function f has limit L as x approaches c if, given any positive number ε, there is a positive number δ such that for all x
$0<|x-c|<\delta \rightarrow|f(x)-L|<\varepsilon$
We write

$$
\lim _{x \rightarrow c} f(x)=L
$$

Read "the limit of f of x as x approaches c equals L

Definition of Limit

For a (two-sided) limit to exist at a specific input value, the left and right-hand limits must be equal.

$$
\lim _{x \rightarrow c} f(x)=L \quad \lim _{x \rightarrow c^{+}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{-}} f(x)=L .
$$

Note: The output value of the function, $f(\mathrm{c})$, may or may not equal the limit (or even exist at all!).

Example: Limit

$$
f(x)=\frac{x^{2}-1}{x-1}
$$

$$
\mathrm{g}(\mathrm{x})=\left\{\begin{array}{cc}
\frac{x^{2}-1}{x-1}, \mathrm{x} \neq 1 \\
1, x=1 & \mathrm{~h}(\mathrm{x})=\mathrm{x}+1
\end{array}\right.
$$

- Note that $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} h(x)=2$ even though $\mathrm{f}(1) \neq 2$ and $\mathrm{g}(1) \neq 2$.

Determining if a limit exists:

- First, try direct substitution!
- $\lim _{x \rightarrow-3}(2 x+5)=$
- Verify the limit graphically (the limit as $x \rightarrow-3^{-}$must equal the limit as $x \rightarrow-3^{+}$)

Determining if a limit exists:

- Find:
- $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=$
- We can't use direct substitution because we get $0 / 0$, which is undefined.
- Let's make a table of values

Determining if a limit exists:

- Find:
- $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=$
- Or we can graph the function to see if the limit exists (remember, the left-hand limit must equal the right-hand limit in order for the limit to exist).

Assignment

- P. 62 \# 1-6, 17-20 (graph by hand!), 31, 32

