Continuity

Warm-Up

- Find $\lim _{x \rightarrow-1} \frac{3 x^{2}-2 x+1}{x^{3}+4}$
- Let $f(x)= \begin{cases}x^{2}-4 x+5, & x<2 \\ 4-x, & x \geq 2\end{cases}$

Find $\lim _{x \rightarrow 2^{-}} f(x)$
$\lim _{x \rightarrow 2^{+}} f(x)$
$\lim _{x \rightarrow 2} f(x)$
$f(2)$

Where is $f(x)$ continuous?

Can you see any general "rules" for continuity?

Requirements for Continuity

- $f(c)$ is defined
- $\lim _{x \rightarrow c} f(x)$ exists
- $f(c)=\lim _{x \rightarrow c} f(x)$
- For an interior point, the two sided limit must exist.
- For an endpoint, continuity requires only the one-sided limit.

Requirements for Continuity

- If a function is not continuous at a point c, we say that f is discontinuous at c, and c is a point of discontinuity of f.
- There are 4 types of discontinuities...

Types of Discontinuity

- Removable discontinuity (hole)
- Jump discontinuity
- Infinite discontinuity (vertical asymptote)
- Oscillating discontinuity

Removable Discontinuity (Hole)

- The function has a limit as $x \rightarrow 0$, and we can remove the discontinuity by setting $f(0)$ equal to this limit.

Jump Discontinuity

- The one sided limits exist, but have different values.
- $\lim _{x \rightarrow 0} f(x)$ does not exist and there is no way to improve the situation by changing f at 0 .

Infinite Discontinuity

Oscillating Discontinuity

- The function oscillates too much to have a limit as $x \rightarrow 0$.

(f)

Removing a discontinuity

- Let $f(x)=\frac{x^{3}-7 x-6}{x^{2}-9}$
- Factor the denominator. What is the domain of f ?
- Investigate the graph of f around $\mathrm{x}=3$. Does f have a removable discontinuity?
- How should f be defined at $x=3$ to remove the discontinuity?
- Show that ($x-3$) is a factor of the numerator of f, and remove all common factors. Now compute the limit as $x \rightarrow 3$ of the reduced form of f.
- Show that the extended function $g(x)=\left\{\begin{array}{ll}\frac{x^{3}-7 x-6}{x^{2}-9}, & x \neq 3 \\ \frac{10}{3}, & x=3\end{array}\right.$ is continuous at $x=3$.

Vocab

- A function is continuous on an interval iff it is continuous at every point of the interval.
- A continuous function is one that is continuous at every point of its domain.
- Note: a continuous function does not have to be continuous on every interval. Example...

Is this a continuous function?

- What is the domain?
- Is the function continuous at every point of its domain?
- This is a continuous function because it is continuous at every point of it domain.
- It has a point of discontinuity at $x=0 \mathrm{~b} / \mathrm{c}$ it is not defined there.

Is this a continuous function?

- EX: The function $\mathrm{y}=\frac{7}{x-3}$ has a domain of $\mathrm{x} \neq 3$.
- Even though it's not continuous everywhere, it is continuous (meaning
"continuous on it's domain")!
- We can say it "has a point of discontinuity" at x = 3,
 because it is not defined there.

Properties of Continuous Functions

- Polynomial functions f are continuous at every real number c because $\lim _{x \rightarrow c} f(x)=f(c)$
- Rational functions are continuous at every point of their domains. They have points of discontinuity at the zeros of their denominators.
- The absolute value function $y=\mid x /$ is continuous at every real number.
- The exponential, log, trig, and radical functions are continuous at every point of their domains.

Properties of Continuous Functions

Theorem 6 Properties of Continuous Functions
If the functions f and g are continuous at $x=c$, then the following combinations are continuous at $x=c$.

1. Sums:
$f+g$
2. Differences:
$f-g$
3. Products:
$f \cdot g$
4. Constant multiples:
5. Quotients:
$k \cdot f$, for any number k
f / g, provided $g(c) \neq 0$

Theorem 7 Composite of Continuous Functions

If f is continuous at c and g is continuous at $f(c)$, then the composite $g \circ f$ is continuous at c.

Examples of Combined Functions

- $f \pm g \quad E X: h(x)=\sin (x)+x^{2}$

- $f_{*} g \quad E X: g(y)=\sin (y) * y^{2}$

- $k f$ for any scalar, k EX: $r(x)=9 \sin (x)$
- $\frac{f}{g}$ provided $\mathrm{g}(\mathrm{c}) \neq 0 \quad \mathrm{EX}: \mathrm{s}(\mathrm{t})=\frac{\sin (t)}{e^{x}}$

Conclusions (aka Take Home Message)

- You can remove "removable discontinuities" by defining an appropriate value at a given domain value.
- You cannot remove jump or infinite discontinuities from both sides. However, you may be able to remove a discontinuity from one side.

Conclusions (aka Take Home Message)

- A function is CONTINUOUS if it is continuous everywhere on its domain.
- It does NOT have to be continuous everywhere.
- If it is continuous only on some parts of the domain, we must state that clearly.
- And finally, we can only operate on a function over continuous pieces of the domain.

Conclusions (aka Take Home Message)

- For instance, the function $\mathrm{y}=\frac{1}{x}$ has a discontinuity at $x=0$, yet it is:
-Continuous on its domain
- Has a point of discontinuity at $x=0$
- Is not continuous on the interval $[-1,1]$
- Is continuous on the interval $(0, \infty)$ and again at $(-\infty, 0)$

Assignment

pg 80 \#1-3, 11-24

