Continuity

Warm-Up

• Find $\lim_{x \to -1} \frac{3x^2 - 2x + 1}{x^3 + 4}$ • Let $f(x) = \begin{cases} x^2 - 4x + 5, \ x < 2 \\ 4 - x, \qquad x \ge 2 \end{cases}$ Find $\lim_{x \to 2^-} f(x)$ $\lim_{x\to 2^+} f(x)$ $\lim_{x\to 2}f(x)$ f(2)

Where is f(x) continuous?

Can you see any general "rules" for continuity?

Requirements for Continuity

- f(c) is defined
- $\lim_{x \to c} f(x)$ exists
- $f(c) = \lim_{x \to c} f(x)$

- For an interior point, the two sided limit must exist.
- For an endpoint, continuity requires only the one-sided limit.

Requirements for Continuity

- If a function is not continuous at a point
 c, we say that *f* is **discontinuous** at c, and
 c is a **point of discontinuity** of f.
- There are 4 types of discontinuities...

Types of Discontinuity

- Removable discontinuity (hole)
- Jump discontinuity
- Infinite discontinuity (vertical asymptote)
- Oscillating discontinuity

Removable Discontinuity (Hole)

 The function has a limit as x→0, and we can remove the discontinuity by setting f(0) equal to this limit.

Jump Discontinuity

- The one sided limits exist, but have different values.
- lim f(x) does not exist and there is no way to^[™] improve the situation
 by changing f at 0.

Infinite Discontinuity

Oscillating Discontinuity

• The function oscillates too much to have a limit as $x \rightarrow 0$.

Removing a discontinuity

- Let $f(x) = \frac{x^3 7x 6}{x^2 9}$
- Factor the denominator. What is the domain of *f*?
- Investigate the graph of f around x=3. Does f have a removable discontinuity?
- How should *f* be defined at x=3 to remove the discontinuity?
- Show that (x-3) is a factor of the numerator of *f*, and remove all common factors. Now compute the limit as x→3 of the reduced form of *f*.
- Show that the **extended function** $g(x) = \begin{cases} \frac{x^2 7x 6}{x^2 9}, x \neq 3\\ \frac{10}{3}, x = 3 \end{cases}$ is continuous at x=3.

Vocab

- A function is **continuous on an interval** iff it is continuous at every point of the interval.
- A **continuous function** is one that is continuous at every point *of its domain*.

• Note: a continuous function does not have to be continuous on every interval. Example...

Is this a continuous function?

- What is the domain?
- Is the function continuous at every point of its domain?
- This is a continuous function because it is continuous at every point of it domain.
- It has a point of discontinuity at x=0 b/c it is not defined there.

Is this a continuous function?

- EX: The function $y = \frac{7}{x-3}$ has a domain of $x \neq 3$.
- Even though it's not continuous everywhere, it is continuous (meaning "continuous on it's domain")!
- We can say it "has a point of discontinuity" at x = 3, because it is not defined there.

Properties of Continuous Functions

- Polynomial functions f are continuous at every real number c because $\lim_{x \to c} f(x) = f(c)$
- Rational functions are continuous at every point of their domains. They have points of discontinuity at the zeros of their denominators.
- The absolute value function y=/x/is continuous at every real number.
- The exponential, log, trig, and radical functions are continuous at every point of their domains.

Properties of Continuous Functions

Theorem 6 Properties of Continuous Functions

If the functions f and g are continuous at x = c, then the following combinations are continuous at x = c.

1. Sums:	f + g
2. Differences:	f - g
3. Products:	$f \cdot g$
4. Constant multiples:	$k \cdot f$, for any number k
5. Quotients:	f/g , provided $g(c) \neq 0$

Theorem 7 Composite of Continuous Functions

If f is continuous at c and g is continuous at f(c), then the composite $g \circ f$ is continuous at c.

Examples of Combined Functions

• $f \pm g EX: h(x) = sin(x) + x^2$

• $f_*g = EX: g(y) = sin(y) * y^2$

- kf for any scalar, k EX: r(x) = 9sin(x)
- $\frac{f}{a}$ provided g(c) $\neq 0$ EX: s(t) = $\frac{\sin(t)}{e^{x}}$

Conclusions (aka Take Home Message)

- You can remove "removable discontinuities" by defining an appropriate value at a given domain value.
- You cannot remove jump or infinite discontinuities from both sides. However, you may be able to remove a discontinuity from one side.

Conclusions (aka Take Home Message)

- A function is CONTINUOUS if it is continuous everywhere on its domain.
- It does NOT have to be continuous everywhere.
- If it is continuous only on some parts of the domain, we must state that clearly.
- And finally, we can only operate on a function over continuous pieces of the domain.

Conclusions (aka Take Home Message)

- For instance, the function $y = \frac{1}{x}$ has a discontinuity at x = 0, yet it is:
 - Continuous on its domain
 - -Has a point of discontinuity at x = 0
 - Is not continuous on the interval [-1,1]
 - Is continuous on the interval $(0, \infty)$ and again at $(-\infty, 0)$

Assignment

• pg 80 #1-3, 11-24