Graphing Trig Functions

Warm-Up: Sketch

- $\mathrm{f}(\mathrm{x})=\sin (x)$
-Find the following points:
-All x where $\sin (\mathrm{x})=0$
oAll x where $\sin (x)= \pm 1$
oAll x where $\sin (x)= \pm 1 / 2$

Sketching Cosecant

oStart by sketching $y=\sin (x)$
oRemember $\csc (x)=\frac{1}{\sin (x)}$, which allows you to plot key points:
oThere will be a vertical asymptote whenever $\sin (x)=0$ (occurs at $x=n \Pi$)

- When $\sin (x)= \pm 1, \csc (x)= \pm \mathbf{1}$ (occurs at $\left.x=\frac{\pi}{2}+n \pi\right)$
- When $\sin (x)= \pm 1 / 2, \mathbf{c s c}(\mathbf{x})= \pm \mathbf{2}$ (occurs at $\mathrm{x}=\frac{n \pi}{4}$, for odd values of n)

CSC(X)

- Domain: all real numbers such that $\mathrm{x} \neq \mathrm{n} \Pi$
\bigcirc Range: $(-\infty,-1] \mathrm{U}[1, \infty)$
-Symmetry: origin
- Vertical Asymptotes: $\mathrm{x}=\mathrm{n} \Pi$

Sketch

- $f(x)=4 \csc \left(2 x+\frac{\pi}{3}\right)-5$

SkETCHING SECANT

- Start by sketching $\mathrm{y}=\cos (\mathrm{x})$
- Remember $\sec (x)=\frac{1}{\cos (x)}$, which allows you to plot key points:
- There will be a vertical asymptote whenever $\cos (x)=0$ (occurs at $\left.x=\frac{\pi}{2}+n \pi\right)$
- When $\cos (x)= \pm 1, \sec (x)= \pm \mathbf{1}$ (occurs at $\mathrm{x}=\mathrm{n} \pi$)
- When $\cos (x)= \pm 1 / 2, \boldsymbol{\operatorname { s e c }}(\mathbf{x})= \pm 2$ (occurs at $\left.\mathrm{x}=\frac{\pi}{4}+n \frac{\pi}{2}\right)$
$\operatorname{SEC}(\mathrm{X})$

- Domain: all real numbers such that $\mathrm{x} \neq \frac{\pi}{2}+n \pi$
-Range: ($-\infty,-1$] U [1, ∞)
-Symmetry: y-axis
- Vertical Asymptotes: $\mathrm{x}=\frac{\pi}{2}+n \pi$

Sketch

- $\mathrm{f}(\mathrm{x})=-3 \sec \left(\frac{1}{2} x+\frac{\pi}{3}\right)+1$
-Hint: Start by sketching

$$
g(x)=-3 \cos \left(\frac{1}{2} x+\frac{\pi}{3}\right)+1
$$

Sketching TANgEnt and Cotangent

$\boldsymbol{\operatorname { t a n }} \mathbf{x}$

- $\mathrm{f}(\mathrm{x})=\tan (\mathrm{x})$
-Period: п
- Domain: all $\mathrm{x} \neq \frac{\pi}{2}+n \pi$
- Range $(-\infty, \infty)$
- Vertical asymptotes: $\mathrm{x}=\frac{\pi}{2}+n \pi$

Sketching Tangent and Cotangent

- Sketch y $=\operatorname{atan}(b x-c)+d$
- First, draw a line at $y=d$ (this is your new midline)
- Then, find and sketch the vertical asymptotes:
- Left asymptote will be at $b x-c=\frac{-\pi}{2}$
- Right asymptote will be at $b x-c=\frac{\pi}{2}$
- The midpoint between the two asymptotes will be the x-intercept. Plot a point. (On the midline)
- At the midpoint between the left asymptote and the x-intercept, go down a units and plot a point (reverse if a is negative)
- At the midpoint between the x-intercept and the right asymptote, go up a units and plot a point (reverse if \mathbf{a} is negative)
- Finish sketching the function, and add another period.

Sketching Tangent and Cotangent

- Sketch $y=-3 \tan (2 x)+4$
o Sketch a line at $y=4$ (this is the new midline)
- Left asymptote at $2 x=-\frac{\pi}{2}$
- Right asymptote at $2 \mathrm{x}=\frac{\pi}{2}$
- The midpoint between the two asymptotes plot the x -intercept
- At the midpoint between the L.A. and the x -intercept, go up 3 (because -3)
- At the midpoint between the x-intercept and the R.A., go down 3 (because -3)
- Finish the sketch and add a second period

Sketching TANgEnt and Cotangent $\boldsymbol{\operatorname { c o t }} \mathbf{x}$

$\circ \mathrm{f}(\mathrm{x})=\cot (\mathrm{x})$
-Period: п
-Domain: all $\mathrm{x} \neq n \pi$
\circ Range ($-\infty, \infty$)
-Vertical asymptotes: $\mathrm{x}=n \pi$

Sketching Cotangent - general

- Sketch y = acot $(b x-c)+d$
- First, draw a line at y=d (this is your new midline)
- Then, find the asymptotes:
- Left asymptote will be at $b x-c=0$
- Right asymptote will be at $b x-c=\pi$
- The midpoint between the two asymptotes will be the x-intercept. Plot a point. (should be on the new midline)
- At the midpoint between the left asymptote and the x-intercept, go up a units (from the midline) and plot a point (reverse if \mathbf{a} is negative)
- At the midpoint between the x-intercept and the right asymptote, go down a units (from the midline) and plot a point (reverse if \mathbf{a} is negative)

Sketching TANGEnT and Cotangent

- Sketch y $=-4 \cot \left(\frac{x}{3}\right)+1$
- Draw the new midline ($\mathrm{y}=\mathrm{a}$)
- Sketch the left asymptote
- Sketch the right asymptote
- At the midpoint between the two asymptotes plot the x-intercept
- At the midpoint between the L.A. and the xintercept go down 4 units and plot a point (because -4)
- At the midpoint between the x-intercept and the R.A. go up 4 units and plot a point (because -4)
- Sketch in the graph and include another period.

